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Abstract
We extend our recent results on ordinary su(N) tensor product multiplicities
to higher su(N) tensor products. Particular emphasis is put on four-
point couplings where the tensor product of four highest weight modules is
considered. The number of times the singlet occurs in the decomposition is the
associated multiplicity. In this framework, ordinary tensor products correspond
to three-point couplings. As in that case, the four-point multiplicity may be
expressed explicitly as a multiple sum measuring the discretized volume of a
convex polytope. This description extends to higher-point couplings as well.
We also address the problem of determining when a higher-point coupling
exists, i.e. when the associated multiplicity is non-vanishing. The solution is a
set of inequalities in the Dynkin labels.

PACS numbers: 02.20.Sv, 02.20.-a

1. Introduction

The decomposition of tensor products of simple Lie algebra modules has been studied for a long
time now. Many elegant results have been found for the multiplicities of the decompositions,
the so-called tensor product multiplicities. However, most results pertain to the decomposition
of tensor products of two irreducible highest weight modules of a simple Lie algebra:

Mλ ⊗ Mµ =
⊕
ν

Tλ,µ
νMν. (1)

Mλ is the module of highest weight λ, while Tλ,µ
ν is the tensor product multiplicity. This

problem is equivalent to the more symmetric one of determining the multiplicity of the singlet
in the decomposition of the triple product

Mλ ⊗ Mµ ⊗ Mν ⊃ Tλ,µ,νM0. (2)

Indeed, if ν+ denotes the weight conjugate to ν, we have Tλ,µ,ν = Tλ,µ
ν+

. We will use the
shorthand notation λ⊗µ⊗ν to represent the left-hand side of (2), and refer to it as a three-point
product.
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The objective of this paper is to discuss higher su(N) tensor products (or higher-point
su(N) couplings), and provide explicit expressions for the associated multiplicities:

Mλ ⊗ Mµ ⊗ · · · ⊗ Mσ ⊃ Tλ,µ,...,σM0. (3)

Based on a generalization of the Berenstein–Zelevinsky (BZ) method of triangles [1], we
have recently obtained very explicit expressions for Tλ,µ,ν . The result is a multiple sum formula
measuring the discretized volume of a convex polytope associated with the tensor product [2].
It is this idea which shall be extended here to cover higher-point couplings. The main focus
will be on four-point couplings. Our results pertain to the A series, Ar = su(r + 1).

We also address the problem of determining when a higher-point coupling exists, i.e.
when the associated multiplicity is non-vanishing. The solution is a set of inequalities in the
Dynkin labels.

2. Ordinary tensor product multiplicities

To fix notation, we review briefly our main result [2] on the computation of ordinary tensor
product multiplicities, i.e. on the evaluation of three-point couplings. We refer to [2] for more
details.

An su(r + 1) BZ triangle, describing a particular coupling (to the singlet) associated with
the triple product λ ⊗ µ ⊗ ν, is a triangular arrangement of

Er = 3
2 r(r + 1) (4)

non-negative integers, denoted entries. The entries are subject to certain constraints: the 3r
outer constraints and the 2Hr hexagon identities, where

Hr = 1
2 r(r − 1) (5)

is the number of hexagons, see below. The case su(3) provides a simple illustration:

(6)

According to the outer constraints, these E2 = 9 non-negative integers are related to the
Dynkin labels of the three integrable highest weights by

m13 + n12 = λ1 n13 + l12 = µ1 l13 + m12 = ν1

m23 + n13 = λ2 n23 + l13 = µ2 l23 + m13 = ν2.
(7)

The entries further satisfy the hexagon conditions

n12 + m23 = n23 + m12 m12 + l23 = m23 + l12 l12 + n23 = l23 + n12 (8)

of which only two are independent. The number of BZ triangles is the triple tensor product
multiplicity Tλ,µ,ν .

The generalization of the BZ triangles we consider is obtained by weakening the constraint
that all entries are non-negative integers to arbitrary integers, negative as well as non-negative.
The hexagon identities and the outer constraints are still enforced. A triangle will be called a
true BZ triangle if all its entries are non-negative.

A generalized su(r + 1) BZ triangle is built out of Hr hexagons and three corner points.
Each hexagon corresponds to two independent constraints on the entries. This leaves

Er − (2Hr + 3r) = Hr (9)
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parameters labelling the possible triangles. Thus, for a given triple product λ⊗µ⊗ ν, the set
of associated triangles spans an Hr -dimensional lattice. Among the lattice points, only a finite
number correspond to true BZ triangles. As already stated, this number is precisely the tensor
product multiplicity of the triple product.

The Hr basis vectors in the lattice correspond to so-called (basis) virtual triangles [2],
denoted V . They are themselves triangles (i.e. points in the lattice) associated with the
particular coupling 0 ⊗ 0 ⊗ 0. In the case su(4) the three basis virtual triangles are

(10)

where 1̄ ≡ −1. In general, a convenient basis for the virtual triangles is given by associating
the simple distribution

1
1 1̄ 1̄ 1

1̄ 1̄
1 1̄ 1̄ 1

1

(11)

of plus and minus ones to any given hexagon. All other entries are zero.
The lattice may now be characterized by an initial triangle T0 and the basis of virtual

triangles, as a generic triangle T may be written

T = T0 +
i+j=r∑
i,j�1

vi,jVi,j . (12)

vi,j are called linear coefficients, and our choice of labelling follows from1

(13)

1 The choice of labelling differs slightly from the one used in [2].
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The initial triangle corresponds to any point in the lattice. A convenient choice is based on the
fact that every highest weight ν in a coupling λ ⊗ µ ⊗ ν satisfies

ν = λ+ + µ+ −
r∑

i=1

niαi ni = (λ+)i + (µ+)i − νi ∈ Z� (14)

where αi is the ith simple root. The coefficients ni are expressed using dual Dynkin labels:

λ =
r∑

i=1

λi�
i =

r∑
i=1

λiα∨
i (15)

where {�i} and {α∨
i } are the sets of fundamental weights and simple co-roots, respectively. For

simply laced algebras like su(N), αi is identical to the co-root α∨
i (with standard normalization

α2 = 2, for α a long root). Now, it is easy to construct the unique true triangle associated with
the coupling λ ⊗ µ ⊗ (λ + µ)+, as well as triangles associated with the couplings 0 ⊗ 0 ⊗ αi .
su(3) examples are

(16)

Adding the triangles according to (14) results in a BZ triangle associated with λ⊗µ⊗ ν. The
result for su(r + 1) is the following generalized BZ triangle:

(17)

The entries ni , Ni and N ′
i are defined by

ni = λr−i+1 + µr−i+1 − νi

Ni = (1 − δi1)ni−1 − ni + µr−i+1

= − λr−i+1 + (1 − δi1)λ
r−i+2 − (1 − δir )µ

r−i + µr−i+1 − (1 − δi1)ν
i−1 + νi

N ′
i = νi − Ni = λr−i+1 − (1 − δi1)λ

r−i+2 + (1 − δir )µ
r−i − µr−i+1 + νi − (1 − δir )ν

i+1

(18)

supplemented by the condition that ni , and thus also Ni and N ′
i , are integers (cf (14)).

A true BZ triangle associated with the product λ ⊗ µ ⊗ ν has the additional property
that all its entries are non-negative integers. From (12) it then follows that the set of true BZ
triangles may be characterized by a set of inequalities in the linear coefficients. It is easily seen
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that these inequalities define a convex polytope embedded in R
Hr , whose discretized volume

is the tensor product multiplicity Tλ,µ,ν . As discussed in [2], this volume may be measured
explicitly and calculated by a multiple sum:

Tλ,µ,ν =
( ∑

v1,1

)( ∑
v2,1

∑
v1,2

)
. . .

( ∑
vr−2,1

· · ·
∑
v1,r−2

)( ∑
vr−1,1

. . .
∑
v1,r−1

)
1. (19)

Here the summation variables are bounded according to

max{−N1, v1,r−2,−N ′
2 + v2,r−2,−µr−2 + v1,r−2 − v2,r−3 + v2,r−2}

� v1,r−1 � min{n1, µr−1 + v1,r−2, λr − v1,r−2 + v2,r−2,

n2 + v1,r−2 − v2,r−2, N
′
1, N2 + v2,r−2}

max{vl−1,r−l − vl−1,r−l−1 + vl,r−l−1,−N ′
l+1 + vl+1,r−l−1,

−µr−l−1 + vl+1,r−l−1 − (1 − δl,r−2)vl+1,r−l−2 + vl,r−l−1}
� vl,r−l � min{λr−l+1 − vl,r−l−1 + vl−1,r−l + vl+1,r−l−1,

nl+1 + vl,r−l−1 − vl+1,r−l−1, Nl+1 + vl+1,r−l−1} for 2 � l � r − 2

max{vr−2,1,−N ′
r} � vr−1,1 � min{λ2 + vr−2,1, nr , Nr}

max{v1,j−1,−µj−1 + v1,j−1 + v2,j−1 − (1 − δj,2)v2,j−2}
� v1,j � min{µj + v1,j−1, λr − v1,j−1 + v2,j−1} for 2 � j � r − 2

max{vi,j−1 + vi−1,j − vi−1,j−1,−µj−1 + vi,j−1 + vi+1,j−1 − (1 − δj,2)vi+1,j−2}
� vi,j � λr−i+1 − vi,j−1 + vi+1,j−1 + vi−1,j for 2 � i, j, i + j � r − 1

vi−1,1 � vi,1 � λr−i+1 + vi−1,1 for 2 � i � r − 2

0 � v1,1 � min{µ1, λr}.
(20)

Due to the freedom in choosing the initial triangle, this is just one out of an infinite class
of multiple sum representations of Tλ,µ,ν . Its asymmetry in the weights merely reflects the
symmetry-breaking choice of initial triangle, and the choice of an order of summation.

3. Four-point products

We focus first on four-point products:

Mλ ⊗ Mµ ⊗ Mν ⊗ Mσ ⊃ Tλ,µ,ν,σM0. (21)

The objective is to characterize the multiplicity Tλ,µ,ν,σ as the discretized volume of a convex
polytope, and then to express the volume explicitly as a multiple sum. Our starting point will
be the decomposition

Tλ,µ,ν,σ =
∑
ρ

Tλ,µ,ρTρ+,ν,σ (22)

which may be represented graphically by

(23)
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The arrow indicates that the third weight associated with the coupling involving λ and µ is
ρ, while its conjugate, ρ+, takes part in the second coupling. Due to the S4 symmetry of
Tλ,µ,ν,σ there are many possible decompositions in terms of three-point couplings, associated
with different channels. As in the case of the three-point couplings, we are not seeking a
symmetric representation of the multiplicity, but merely an explicit multiple sum formula.
The decomposition (22) is itself a representation but less explicit than our goal. The former
corresponds to considering a sum over products of discretized volumes of convex polytopes
embedded in Hr -dimensional Euclidean spaces. The sum is over the r Dynkin labels of the
interior weight ρ. Our goal is to represent the multiplicity as the discretized volume of a single
convex polytope embedded in a (2Hr + r)-dimensional Euclidean space, and eventually to
measure explicitly the volume in terms of a multiple sum. The number of parameters is, of
course, conserved.

Our approach does not admit an immediate and simple modification in order to obtain
a result which is manifestly S4 symmetric. Taking an average over the possible (symmetry-
breaking) channels would provide a straightforward symmetrization but result in a much more
complicated expression. One should rather look for an approach which respects the four-
coupling nature, and thus does not rely on breaking the coupling up into three-point couplings.

Let

(24)

denote a BZ triangle whose entries have not been specified explicitly. This offers an alternative
illustration of the channel (23):

(25)

The dotted lines indicate a gluing of the triangles. These composite objects may be regarded as
a generalization of the BZ triangles to diagrams associated with particular choices of four-point
channels, governed by a gluing of triangles representing three-point couplings. Disregarding
this origin of (25), the configuration is merely an arrangement of 2Er (non-)negative integers
subject to certain constraints: 4Hr hexagon identities, 4r outer constraints representing the four
weights and r gluing constraints. Along the dotted lines, the original 2r outer constraints are
substituted by the r gluing constraints requiring opposite weights to be identical. A four-point
diagram is called true if all entries are non-negative integers. Explicit examples of four-point
diagrams are provided below.

The number of parameters labelling the possible four-point diagrams is

2Er − (4Hr + 4r + r) = 2Hr + r. (26)

As in the three-point case, this reflects the existence of 2Hr + r basis virtual diagrams that
correspond to the basis vectors in the (2Hr + r)-dimensional lattice associated with any given
four-point product λ ⊗ µ ⊗ ν ⊗ σ . The points in the lattice are the four-point diagrams.

A triangle consisting of zeros alone is called a zero triangle. It is then obvious that 2Hr

of the basis virtual diagrams are made up of a basis virtual triangle glued together with a
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zero triangle, while the remaining r virtual diagrams are associated with the gluing. We shall
denote virtual diagrams of the first kind by V (1)

i,j or V (2)
i,j (depending on which triangle includes

the non-trivial part)2 and call them extended (basis) virtual triangles, and virtual diagrams of
the second kind by Gi and call them ‘simple gluing roots’. It follows from (14) that the latter
indeed correspond to pairs of simple roots, as illustrated by this su(3) example (cf (16)):

(27)

A natural generalization of conventional notation allows us to represent graphically the
gluing roots as tree graphs:

(28)

These graphs, of course, represent couplings that do not exist (i.e. they have vanishing
multiplicities) but nevertheless serve to illustrate the power of virtual diagrams. One may
even extend the summation range in (23) to include them, since the associated algebraic
expressions (22) merely contribute zeros whenever non-true diagrams are encountered.

As in the three-point case, we may now characterize any diagram D in the lattice by
specifying an initial diagram D0:

D = D0 +
∑
a=1,2

i+j=r∑
i,j�1

v
(a)
i,j V (a)

i,j −
r∑

i=1

giGi . (29)

v
(a)
i,j and gi are integers, named linear coefficients. Note that we have chosen a convention with

a minus sign in front of the last sum (29). This reflects the intimate relationship between a
simple gluing root and (our convention (11) for) a basis virtual triangle:

(30)

One may, of course, choose to substitute the gluing roots with virtual triangles. However, that
would introduce redundant parameters that cannot be fixed. This is because such extended
gluing roots have the same number of entries as virtual triangles but fewer constraints. su(2)

2 The lower indices i and j refer to any chosen labelling of the Hr hexagons and, thus, of the associated virtual
triangles. (13) is a merely a convenient choice.



7692 J Rasmussen and M A Walton

offers a simple illustration of that, where the single gluing root is substituted by a single
hexagon:

(31)

The redundancy occurs since the hexagon identities only allow us to fix a relation between the
two extra entries e and e′. This ‘uniformization’ makes possible relations between higher-point
su(N ′) couplings and lower-point su(N) couplings, when N is sufficiently larger than N ′. The
four-point su(2) diagram above may thus be embedded in a three-point su(N � 4) diagram.
We hope to discuss such relations in the future. Here, however, we refrain from replacing the
gluing roots.

Now we turn to the construction of a convenient initial diagram D0. Referring to (22) we
know that

ρ = λ+ + µ+ −
r∑

i=1

n
(1)
i αi n

(1)
i = (λ+)i + (µ+)i − ρi ∈ Z�

ρ+ = ν+ + σ + −
r∑

i=1

n
(2)
i αi n

(2)
i = (ν+)i + (σ +)i − (ρ+)i ∈ Z�.

(32)

It follows that

λ + µ + ν + σ =
r∑

i=1

miαi mi ∈ Z� (33)

ensuring the integer nature of the entries. This invites us to choose

(34)

as the initial diagram. This D0 is easily constructed explicitly as it corresponds to gluing
together our original initial triangles T0 (17) associated with the couplings λ ⊗ µ ⊗ (ν + σ)

and ν ⊗ σ ⊗ (ν + σ)+, respectively.
Now, requiring that D in (29) is a true diagram leads to a set of inequalities in the linear

coefficients v and g. It follows from the structure of the virtual diagrams that this set defines
a convex polytope in the Euclidean space R

2Hr+r = R
r2

. The discretized volume of the
polytope is by construction the tensor product multiplicity Tλ,µ,ν,σ . This characterization of
the four-point tensor product multiplicity is our first main result.

To measure the volume in a straightforward manner, we should organize the inequalities
such that a multiple sum expressing the volume may be written down without having to
evaluate intersections of polytope faces. This corresponds to choosing an ‘appropriate’ order
of summation, as discussed in [2]. Anticipating the extension to higher tensor products to be
discussed below, we propose the following procedure.
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Let the left (or lower) triangle in (25) correspond initially to the product λ⊗µ⊗ (ν + σ)

such that the right triangle initially corresponds to the product ν⊗σ⊗(ν+σ)+. These couplings
are of course altered by the gluing process, adding linear combinations of roots to the third
weights. Denoting the linear coefficients of the virtual triangles v(1)i,j and v

(2)
i,j , respectively, we

may choose the labelling indicated in the following diagram (cf (13)):

(35)

An appropriate order of summation is then obtained by starting with the rightmost variable,
v
(2)
1,1, and moving systematically towards the left:

Tλ,µ,ν,σ =
( ∑

v
(1)
1,1

)( ∑
v
(1)
2,1

∑
v
(1)
1,2

)
· · ·

( ∑
v
(1)
r−1,1

· · ·
∑
v
(1)
1,r−1

)( ∑
gr

· · ·
∑
g1

)

×
( ∑

v
(2)
1,r−1

· · ·
∑
v
(2)
r−1,1

)
· · ·

( ∑
v
(2)
1,2

∑
v
(2)
2,1

)( ∑
v
(2)
1,1

)
1. (36)

The summation variables are bounded according to

max{0,−σ2 + v
(2)
1,2, v

(2)
1,2 − v

(2)
2,2 + v

(2)
2,1,−νr−1 + v

(2)
2,1}

� v
(2)
1,1 � min{σ1, v

(2)
1,2, νr − v

(2)
1,2 + v

(2)
2,1, σ1 + v

(2)
1,2 − v

(2)
2,1, v

(2)
2,1, νr}

max{−σ2 + v
(2)
i−1,2 − v

(2)
i−1,3 + v

(2)
i,2 , v

(2)
i,2 − (1 − δi,r−2)v

(2)
i+1,2 − δi,r−2g2 + v

(2)
i+1,1,−νi+1 + v

(2)
i+1,1}

� v
(2)
i,1 � min{νr−i+1 + v

(2)
i−1,2 − v

(2)
i,2 + v

(2)
i+1,1,

σ1 + v
(2)
i,2 − v

(2)
i+1,1, v

(2)
i+1,1} for 2 � i � r − 2

max{v(2)i+1,j + v
(2)
i,j+1 − (1 − δi+j,r−1)v

(2)
i+1,j+1 − δi+j,r−1gj+1,

−σj+1 + v
(2)
i−1,j+1 − v

(2)
i−1,j+2 + v

(2)
i,j+1}

� v
(2)
i,j � νr−i+1 + v

(2)
i−1,j+1 − v

(2)
i,j+1 + v

(2)
i+1,j for 2 � i, j, i + j � r − 1

max{−σj+1 + v
(2)
1,j+1, v

(2)
1,j+1 + v

(2)
2,j − (1 − δj,r−2)v

(2)
2,j+1 − δj,r−2gr−1}

� v
(2)
1,j � min{v(2)1,j+1, νr − v

(2)
1,j+1 + v

(2)
2,j } for 2 � j � r − 2

max{−ν1 + g1,−σ2 + v
(2)
r−2,2 + g2 − g3}

� v
(2)
r−1,1 � min{σ1 − g1 + g2, ν2 + v

(2)
r−2,2 + g1 − g2, g1}

−σl+1 + v
(2)
r−l−1,l+1 + gl+1 − gl+2

� v
(2)
r−l,l � νl+1 − v

(2)
r−l−1,l+1 + gl − gl+1 for 2 � l � r − 2

−σr + gr � v
(2)
1,r−1 � min{gr, νr + gr−1 − gr}
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max{−n1 + v
(1)
1,r−1,−N2 + v

(1)
1,r−1 − v

(1)
2,r−2 + g2}

� g1 � min{N1 + v
(1)
1,r−1, N

′
1 − v

(1)
1,r−1 + g2}

max{−ni + v
(1)
i−1,r−i+1 + v

(1)
i,r−i − v

(1)
i−1,r−i ,−Ni+1 + v

(1)
i,r−i − (1 − δi,r−1)v

(1)
i+1,r−i−1 + gi+1}

� gi � N ′
i + v

(1)
i−1,r−i+1 − v

(1)
i,r−i + gi+1} for 2 � i � r − 1

−nr + v
(1)
r−1,1 � gr � N ′

r + v
(1)
r−1,1

max{v(1)1,j−1,−µj−1 + v
(1)
1,j−1 + v

(1)
2,j−1 − (1 − δj,2)v

(1)
2,j−2}

� v
(1)
1,j � min{µj + v

(1)
1,j−1, λr − v

(1)
1,j−1 + v

(1)
2,j−1} for 2 � j � r − 1

max{v(1)i,j−1 + v
(1)
i−1,j − v

(1)
i−1,j−1,−µj−1 + v

(1)
i,j−1 + v

(1)
i+1,j−1 − (1 − δj,2)v

(1)
i+1,j−2}

� v
(1)
i,j � λr−i+1 − v

(1)
i,j−1 + v

(1)
i+1,j−1 + v

(1)
i−1,j for 2 � i, j, i + j � r

v
(1)
i−1,1 � v

(1)
i,1 � λr−i+1 + v

(1)
i−1,1 for 2 � i � r − 1

0 � v
(1)
1,1 � min{µ1, λr} (37)

where the parameters ni , Ni and N ′
i are defined as in (18), with ν replaced by ν + σ :

ni = λr−i+1 + µr−i+1 − (ν + σ)i

Ni = (1 − δi1)ni−1 − ni + µr−i+1

= − λr−i+1 + (1 − δi1)λ
r−i+2 − (1 − δir )µ

r−i + µr−i+1

−(1 − δi1)(ν + σ)i−1 + (ν + σ)i

N ′
i = (ν + σ)i − Ni

= λr−i+1 − (1 − δi1)λ
r−i+2 + (1 − δir )µ

r−i

−µr−i+1 + (ν + σ)i − (1 − δir )(ν + σ)i+1. (38)

This multiple sum formula is our second main result. For su(2), su(3) and su(4) the explicit
multiple sum formulae are provided in section 5.

4. Higher-point couplings

We shall now indicate how one may extend our results on four-point couplings to any higher
N -point coupling, in straightforward fashion.

It is well known that higher-point couplings may be decomposed into three-point couplings
along the lines of (22). The various tree-graph channels all have diagram counterparts, as
illustrated by the following two examples:

(39)



Higher su(N) tensor products 7695

and

(40)

Since we may choose the channel freely, we can avoid complicated configurations like the
‘rocket’ of (40) and concentrate on the ‘string-like’ ones, like (39) and the following nine-
point coupling:

(41)

Thus, a N -point coupling may conveniently be represented by a N -point diagram consisting of
N −2 triangles glued together along N −3 pairs of faces to form a string-like configuration. A
N -point diagram is therefore a geometrical arrangement of (N −2)Er (non-)negative integers
subject to 2(N −2)Hr hexagon identities, N r outer constraints and (N −3)r gluing constraints.
(This is also true for the more complicated diagrams, such as (40).) This leaves

(N − 2)Er − ((N − 2)Hr + N r + (N − 3)r) = (N − 2)Hr + (N − 3)r (42)

parameters labelling the possible diagrams. As should be, this is equal to the total number of
virtual triangles and simple gluing roots.

Thus, from the point of view of the N -point diagram, we have two types of virtual
diagrams: extended (basis) virtual triangles V and simple gluing roots G, exactly as for four-
point couplings. The extension of (29) is therefore obvious:

D = D0 +
N−2∑
a=1

i+j=r∑
i,j�1

v
(a)
i,j V (a)

i,j −
N−3∑
a=1

r∑
i=1

g
(a)
i G(a)

i . (43)

The initial diagram D0 is likewise easy to describe, as it may be constructed by gluing N − 2
initial triangles together. Labelling the N weights according to (in this example N is assumed
odd)

(44)
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the participating initial triangles are associated with the couplings

λ((N+1)/2) ⊗ λ((N+3)/2) ⊗ (λ((N+1)/2) + λ((N+3)/2))+

(λ((N+1)/2) + λ((N+3)/2)) ⊗ λ((N+5)/2) ⊗ (λ((N+1)/2) + λ((N+3)/2) + λ((N+5)/2))+

...

(λ(3) + · · · + λ(N−1)) ⊗ λ(N ) ⊗ (λ(3) + · · · + λ(N ))+

λ(1) ⊗ λ(2) ⊗ (λ(3) + · · · + λ(N )). (45)

The weights are subject to the consistency condition (cf (33))

λ(1) + · · · + λ(N ) =
r∑

i=1

miαi mi ∈ Z�. (46)

The characterization of the associated tensor product multiplicity in terms of a convex
polytope is materialized by requiring that the diagram should be a true diagram, i.e. all
entries must be non-negative integers. As before, its discretized volume is the multiplicity
by construction. That volume can be expressed explicitly as a multiple sum. An appropriate
order of summation is indicated here:

Tλ(1),λ(2),...,λ(N ) =
{ ∑

v(1)

}{ ∑
g(1)

}
· · ·

{ ∑
v(N−3)

}{ ∑
g(N−3)

}{ ∑
v(N−2)

}
1. (47)

This generalization of our main results on three- and four-point couplings concludes the
extension to general higher-point couplings.

5. Examples and an application

It is of interest to know whether or not a N -point coupling λ ⊗ µ ⊗ · · · ⊗ σ exists, without
having to work out the tensor product multiplicity. Based on our multiple sum formulae (36)
and (47), one may derive a set of inequalities in the dual and ordinary Dynkin labels of the N
weights, determining when the associated tensor product multiplicity is non-vanishing. The
method is an immediate extension of the one employed in [2] when discussing three-point
couplings (19). We work out the inequalities for su(2) and su(3) four-point couplings. In
principle, it is possible to repeat the procedure for higher rank and higher N than four, though
it rapidly becomes cumbersome.

To the best of our knowledge, similar results only exist for three-point products where,
besides our work [2], the works [3, 4] provide recent results and extensive lists of references.

For su(2) the BZ triangle representing the product λ ⊗ µ ⊗ ν is unique (H1 = 0):

(48)

Nevertheless, gluing two triangles together leaves one free parameter g. We have

D = D0 − gG (49)
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where

(50)

and

(51)

Requiring D to be a true diagram results in a set of inequalities defining a one-dimensional
convex polytope—a line segment. Its discretized volume (or length) is the sought multiplicity:

Tλ,µ,ν,σ =
min{S−λ1, S−µ1, ν1, σ1}∑
g=max{0, S−λ1−µ1}

1 S ≡ 1
2 (λ1 + µ1 + ν1 + σ1) ∈ Z�. (52)

The summation, and thus the multiplicity, is non-vanishing if and only if the upper bound is
greater than or equal to the lower bound. This requirement defines a four-dimensional cone:

0 � λ1, µ1, ν1, σ1, S − λ1, S − µ1, S − ν1, S − σ1. (53)

It is easily verified that (52) and (53) are in accordance with well-known results.
For su(3) the four-point coupling may be characterized by a convex polytope in a four-

dimensional Euclidean space. Its discretized volume is the tensor product multiplicity which
we find may be expressed as the following multiple sum:

Tλ,µ,ν,σ =
min{λ2, µ1}∑

v(1)=0

N ′
2+v(1)∑

g2=−n2+v(1)

min{N1+v(1), N ′
1+g2−v(1)}∑

g1=max{−N2+v(1)+g2, −n1+v(1)}

×
min{ν2, σ1, g1, g2, ν2+g1−g2, σ1−g1+g2}∑

v(2)=max{0, −σ2+g2, −ν1+g1}
1 (54)

where the weights are subject to

Si ≡ λi + µi + νi + σ i ∈ Z� i = 1, 2 (55)

and where

n1 = λ2 + µ2 − ν1 − σ 1

n2 = λ1 + µ1 − ν2 − σ 2

N1 = −λ2 − µ1 + µ2 + ν1 + σ 1

N2 = −λ1 + λ2 + µ1 − ν1 + ν2 − σ 1 + σ 2

N ′
1 = λ2 + µ1 − µ2 + ν1 − ν2 + σ 1 − σ 2

N ′
2 = λ1 − λ2 − µ1 + ν2 + σ 2.

(56)

This explicit result is believed to be new.
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Analysing when the tensor product multiplicity is non-vanishing leads to the following
definition of a cone in the eight-dimensional Dynkin label space:

0 � λi, µi, νi, σi i = 1, 2

0 � Si − λ1 − λ2, Si − µ1 − µ2, Si − ν1 − ν2, Si − σ1 − σ2 i = 1, 2

0 � Si − λi − µi, Si − λi − νi, Si − λi − σi

Si − µi − νi, Si − µi − σi, Si − νi − σi i = 1, 2.

(57)

This explicit characterization is also believed to be new. It is verified immediately that, for one
weight equal to zero, (57) reduces to the result for the three-point product discussed in [2], i.e.
Tλ,µ,ν,0 > 0 if and only if Tλ,µ,ν > 0.

For ease of use of the formula (36) expressing the tensor product multiplicity Tλ,µ,ν,σ as
a multiple sum, we conclude this section by writing down explicitly the result for su(4):

Tλ,µ,ν,σ =
min{λ3, µ1}∑

v
(1)
1,1=0

λ2+v(1)1,1∑
v
(1)
2,1=v

(1)
1,1

min{λ3+v(1)2,1−v
(1)
1,1, µ2+v(1)1,1}∑

v
(1)
1,2=max{−µ1+v(1)2,1+v(1)1,1, v

(1)
1,1}

N ′
3+v(1)2,1∑

g3=−n3+v(1)2,1

×
N ′

2+g3+v(1)1,2−v
(1)
2,1∑

g2=max{−N3+g3+v(1)2,1, −n2+v(1)1,2+v(1)2,1−v
(1)
1,1}

min{N ′
1+g2−v

(1)
1,2, N1+v(1)1,2}∑

g1=max{−n1+v(1)1,2, −N2+g2+v(1)1,2−v
(1)
2,1}

×
min{ν3+g2−g3, g3}∑

v
(2)
1,2=−σ3+g3

min{ν2+v(2)1,2+g1−g2, σ1−g1+g2, g1}∑
v
(2)
2,1=max{−ν1+g1, −σ2+v(2)1,2+g2−g3}

×
min{ν3, σ1, v

(2)
2,1, v

(2)
1,2, ν3+v(2)2,1−v

(2)
1,2, σ1−v

(2)
2,1+v(2)1,2}∑

v
(2)
1,1=max{0, −ν2+v(2)2,1, −σ2+v(2)1,2, v

(2)
2,1+v(2)1,2−g2}

1. (58)

The parameters ni , Ni and N ′
i are defined in (38), while the weights are subject to the condition

λi + µi + νi + σ i ∈ Z� i = 1, 2, 3. (59)

6. Conclusion

We have generalized our recent work on three-point products [2] to cover general N -point
products. That is, we have characterized the associated higher tensor product multiplicities by
certain convex polytopes, and measured explicitly their discretized volumes. The latter are the
multiplicities and are expressed as multiple sums.

The characterization of the multiplicity as the number of integer points in a convex polytope
is an example of a polyhedral combinatorial expression. Alternative polyhedral combinatorial
expressions for three-point products (including other simple Lie algebras as well) may be found
in [5, 6]. To the best of our knowledge, our result for higher-point products is the first of its
kind.

As an application we have also addressed the problem of determining when a tensor
product multiplicity is non-vanishing and, as an illustration of the general resolution, provided
explicit characterizations for su(2) and su(3). The result for su(3) is believed to be new.

We are currently extending our work (presented here and in [2]) on tensor product
multiplicities to fusion multiplicities. The latter are relevant to the representation theory of
affine extensions of the Lie algebra, the so-called affine Kac–Moody algebras. They have found
prominent applications to conformal field theory with affine Lie group symmetry, the so-called
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Wess–Zumino–Witten (WZW) theories. Since tensor product multiplicities correspond to the
infinite-level limit of fusion multiplicities, our current efforts are concentrated on incorporating
the finite-level dependence into the characterization of the multiplicities in terms of convex
polytopes and their discretized volumes. That again relies on our recent studies of three-point
correlation functions in WZW theory [7, 8]. We intend to report more on this in the future.

Related in spirit to our approach is the recent work [9] on fusion rules in SU(N) WZW
theory. For lower ranks the authors discuss a combinatorial relation between three-point
fusion multiplicities and numbers of certain group theoretical orbits. It would be interesting
to understand how the results of [9] are related to ours.
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